Multivariate Asymptotics for Products of Large Powers with Applications to Lagrange Inversion

نویسندگان

  • Edward A. Bender
  • L. Bruce Richmond
چکیده

An asymptotic estimate is given for the coe cients of products of large powers of generating functions. This theorem and another local limit theorem which is useful for conditioning are applied to various combinatorial enumeration problems that involve multivariate Lagrange inversion. 1991 AMS Class. No. Primary: 41A63 Secondary: 05A16, 05C05, 41A60 the electronic journal of combinatorics 6 (1999), #R8 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Lagrange inversion, with an application to factorial numbers

Niederhausen, H., Fast Lagrange inversion, with an application to factorial numbers, Discrete Mathematics 104 (1992) 99-110. Suppose /3(t) and y(t) are a pair of compositional inverse formal powerseries. Lagrange inversion expresses the coefficient oft” in y(t)” in terms of the coefficient of tC” in /c?(t)-“. ‘Fast Lagrange inversion’ calculate the latter for invertible power series with nonzer...

متن کامل

Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions

Let {ar : r ∈ Nd} be a d-dimensional array of numbers for which the generating function F (z) := ∑ r arz r is meromorphic in a neighborhood of the origin. For example, F may be a rational multivariate generating function. We discuss recent results that allow the effective computation of asymptotic expansions for the coefficients of F . Our purpose is to illustrate the use of these techniques on...

متن کامل

Lagrange Inversion for Species

1. Introduction. The Lagrange inversion formula is one of the fundamental results of enumerative combinatorics. It expresses the coefficients of powers of the compositional inverse of a power series in terms of the coefficients of powers of the original power series. G. Labelle [10] extended Lagrange inversion to cycle index series, which are equivalent to symmetric functions. Although motivate...

متن کامل

Asymptotics of Implicit Functions and Computer Algebra

We describe several algorithms for the asymptotic inversion of functions, from the computer algebra viewpoint. We start with some classical results, such as the inversion theorem of Lagrange. We next consider functions which can only be expanded in more complicated as-ymptotic scales. Finally, we brieey discuss the problem of nding the asymptotic behaviour of implicit functions.

متن کامل

Multivariate Lagrange inversion formula and the cycle lemma

We give a multitype extension of the cycle lemma of (Dvoretzky and Motzkin 1947). This allows us to obtain a combinatorial proof of the multivariate Lagrange inversion formula that generalizes the celebrated proof of (Raney 1963) in the univariate case, and its extension in (Chottin 1981) to the two variable case. Until now, only the alternative approach of (Joyal 1981) and (Labelle 1981) via l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1999